Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M. Sukeri M. Yusof, ${ }^{\text {a }}$ Bohari M. Yamin ${ }^{\text {a* }}$ and Mustaffa Shamsuddin ${ }^{\text {b }}$
 ${ }^{\mathrm{a}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, and ${ }^{\text {b }}$ Institut Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.057$
$w R$ factor $=0.133$
Data-to-parameter ratio $=16.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(N-Benzoylhydrazinocarbothioyl)benzamide

The molecular structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, adopts a cis-trans configuration with respect to the position of the benzoyl and benzamide groups relative to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds, respectively. In the crystal structure, the molecules are linked by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into linear chains parallel to the c axis.

Comment

The molecular structure and dimensions of the title compound, (I), are similar to those of other benzoylthiourea derivatives, such as N-benzoyl- N^{\prime}-phenylthiourea (Yamin \& Yusof, 2003a), N-benzoyl- N^{\prime}-(3,4-dimethylphenyl)thiourea (Shanmuga Sundara Raj et al., 1999) and N^{\prime}-benzoyl- $N-p$ bromophenylthiourea (Yamin \& Yusof, 2003b), with a cistrans configuration with respect to the position of the benzamide and benzoyl groups relative to the S atom across the $\mathrm{C} 8-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{N} 1$ bonds, respectively.

The central thiourea moiety ($\mathrm{S} 1 / \mathrm{C} 8 / \mathrm{N} 1 / \mathrm{N} 2$) is planar. The benzoyl [maximum deviation at O 1 of 0.348 (2) \AA] and benzamide [maximum deviation at N3 of 0.306 (2) \AA] fragments are essentially planar. The central thiourea moiety makes angles with the benzoyl and benzamide fragments of $15.12(11)$ and $31.45(12)^{\circ}$, respectively. The inclination between the benzoyl and benzamide fragments is $16.42(14)^{\circ}$. There are two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intramolecular hydrogen bonds (Table 2). In the crystal structure, the molecules are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts (Table 2), forming linear chains parallel to the c axis (Fig. 2).

Experimental

A solution of benzhydrazide $(1.62 \mathrm{~g}, 0.011 \mathrm{~mol})$ in acetone $(50 \mathrm{ml})$ was added dropwise to 50 ml of an acetone solution containing an equimolar amount of benzoyl isothiocyanate in a two-necked roundbottomed flask. The solution was refluxed for about 2 h and then cooled in ice. The white precipitate was filtered off and washed with ethanol-distilled water, then dried in a vacuum (yield 83%). Recrystallization from ethanol yielded single crystals suitable for X-ray analysis.

Received 29 April 2003

Accepted 7 May 2003
Online 16 May 2003

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids. Dashed lines indicate intramolecular hydrogen bonds.

Figure 2
Packing diagram of (I), viewed down the b axis. The dashed lines denote the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=299.34$
Monoclinic, $P 2_{1} / c$
$a=14.7949$ (19) \AA
$b=7.7004$ (10) A
$c=13.9577(18) \AA$
$\beta=117.705(2)^{\circ}$
$V=1407.8(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.880, T_{\text {max }}=0.977$
7907 measured reflections

$$
D_{x}=1.412 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1584 reflections
$\theta=1.6-27.5^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Slab, colourless
$0.55 \times 0.21 \times 0.10 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.133$
$S=1.05$
3097 reflections
190 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 8$	$1.659(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.388(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.221(3)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.324(3)$
$\mathrm{O} 2-\mathrm{C} 9$	$1.222(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.375(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.376(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.346(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$127.3(2)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$115.4(2)$
$\mathrm{C} 9-\mathrm{N} 3-\mathrm{N} 2$	$119.8(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.88	$2.558(3)$	134
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S} 1$	0.86	2.59	$2.923(2)$	104
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.31	$3.114(3)$	155
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.47	$3.263(4)$	142

Symmetry code: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

After their location in a difference map, all H atoms were fixed geometrically and allowed to ride on the parent C or N atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Shanmuga Sundara Raj, S., Puviarasan, K., Velmurugan, D., Jayanthi, G. \& Fun, H.-K. (1999). Acta Cryst. C55, 1318-1320.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Yamin, B. M. \& Yusof, M. S. M. (2003a). Acta Cryst, E59, o151-o152.
Yamin, B. M. \& Yusof, M. S. M. (2003b). Acta Cryst, E59, o340-o341.

